Swift Codable @Published Comformance

Main Idea

Swift already has rules in place that say if an array contains Codable types then the whole array is Codable, and the same for dictionaries and sets. However, SwiftUI doesn’t provide the same functionality for its Published struct – it has no rule saying “if the published object is Codable, then the published struct itself is also Codable.”

As a result, we need to make the type conform ourselves: we need to tell Swift which properties should be loaded and saved, and how to do both of those actions.

First, this initializer is handed an instance of a new type called Decoder. This contains all our data, but it’s down to us to figure out how to read it.

Second, anyone who subclasses our User class must override this initializer with a custom implementation to make sure they add their own values. We mark this using the required keyword: required init. An alternative is to mark this class as final so that subclassing isn’t allowed, in which case we’d write final class User and drop the required keyword entirely.

Third, inside the method we ask our Decoder instance for a container matching all the coding keys we already set in our CodingKey struct by writing decoder.container(keyedBy: CodingKeys.self). This means “this data should have a container where the keys match whatever cases we have in our CodingKeys enum. This is a throwing call, because it’s possible those keys don’t exist.

Finally, we can read values directly from that container by referencing cases in our enum – container.decode(String.self, forKey: .name). This provides really strong safety in two ways: we’re making it clear we expect to read a string, so if name gets changed to an integer the code will stop compiling; and we’re also using a case in our CodingKeys enum rather than a string, so there’s no chance of typos.

There’s one more task we need to complete before the User class conforms to Codable: we’ve made an initializer so that Swift can decode data into this type, but now we need to tell Swift how to encode this type – how to archive it ready to write to JSON.

This step is pretty much the reverse of the initializer we just wrote: we get handed an Encoder instance to write to, ask it to make a container using our CodingKeys enum for keys, then write our values attached to each key.

class User: ObservableObject, Codable {
    enum CodingKeys: CodingKey {
        case name
    }
    
    @Published var name = "Raymond Chen"
    
    required init(from decoder: Decoder) throws {
        let container = try decoder.container(keyedBy: CodingKeys.self)
        name = try container.decode(String.self, forKey: .name)
    }
    
    func encode(to encoder: Encoder) throws {
        var container = encoder.container(keyedBy: CodingKeys.self)
        try container.encode(name, forKey: .name)
    }
}

struct ContentView: View {
    var body: some View {
        Text("Hello, world!")
            .padding()
    }
}

Notes mentioning this note


Here are all the notes in this garden, along with their links, visualized as a graph.

100DaysofSwiftUIAlgorithmsAffirmation TimerBPM ClapperBPM TrainingMetronome Vintage 3DHackingWithSwiftSwiftUI Accessibility Hiding and Grouping DataSwiftUI Accessibility Identifying ViewsSwiftUI Accessibility Read Value ControlsSwiftUI Accessibility Support as NeededSwiftUI AccessibilitySwiftUI Advanced ViewsSwiftUI CGAffineTransformSwiftUI Drawing animatableDataSwiftUI Drawing Special EffectsSwiftUI DrawingSwiftUI ImagePaintSwiftUI MetalSwiftUI PathsSwiftUI ShapesSwiftUI Image AlbumImage GeometryReaderSwiftUI Image InterpolationSwiftUI ImageSwiftUI Intergrate UIKitSwiftUI Basic ViewsSwiftUI ButtonsSwiftUI ColorSwiftUI GradientSwiftUI DatePickerSwiftUI Form ValidationSwiftUI FormSwiftUI SliderSwiftUI StepperSwiftUI TextEditorSwiftUI GridSwiftUI GroupsSwiftUI ListSwiftUI Navigation BarSwiftUI ScrollViewSwiftUI SpacersSwiftUI StacksSwiftUI Views And ModifiersSwiftUI Gestures AdvancedSwiftUI Gestures BasicSwiftUI Gestures CombinedSwiftUI GesturesSwiftUI Custom Row Swipe ActionsSwiftUI HapticsSwiftUI HitTestingSwiftUI InteractionsSwiftUI Searchable ViewsSwiftUI Absolute PositioningSwiftUI AlignmentSwiftUI AlignmentGuideSwiftUI Custom AlignmentSwiftUI GeometryReader BasicsSwiftUI GeometryReader UsageSwiftUI How Layout WorksSwiftUI Layout TechniquesSwiftUI Multiple Views Side by SideSwiftUI Switch View with EnumsSwiftUI Switch View with EnumsSwiftUI NavigationSwift NavigationLinkSwiftUI SheetsSwiftUI TabsSwiftUI BindingSwiftUI Environment WrapperSwiftUI FetchRequest WrapperSwiftUI FocusState WrapperSwiftUI MainActor WrapperSwiftUI ObservableObject WrapperSwiftUI ObservedObject WrapperSwiftUI Property WrappersSwift ObservableObject Manually Publishing ChangesSwiftUI State WrapperSwiftUI StateObject WrapperSwiftUI ViewBuilder WrapperSwiftUI ScenesSwiftUI AlertsSwiftUI Confirmation DialogSwiftUI Context MenuSwiftUI Popup WindowsSwiftUI SheetsCS193p Emoji ArtCS193p Matching GameCS193p Set GameStanford CS193pSwift Basic Data TypesSwift BooleanSwift FloatSwift IntSwift StringSwift ArraySwift ClassSwift Complex Data TypesSwift DictionarySwift EnumSwift SetSwift StructSwift Animating GesturesSwift Animating TransitionsSwift Animations TypesSwift animationsSwift Customize AnimationsSwift URLSessionSwift NetworkingSwift URLSessionSwift Comparable ProtocolsSwift ProtocolsSwift Codable @Published ComformanceSwift CodableSwift Documents DirectorySwift StorageSwift UserDefaultsSwiftSwift App BundleSwift Package DependenciesSwift TimerSwift ToolsSwift Basic TechniquesSwift ClosuresSwift ConditionsSwift ExtensionsSwift FunctionsSwift LoopsSwift OptionalsSwift Variable and ConstantsSwift TechniquesSwift Type AnnotationSwift Unique TypesSwift Result TypeSwift Framework CoreDataSwift Framework CoreImageSwift Framework LocalAuthenticationSwift Framework MLSwift Framework MapKitSwift Framework UNUserNotificationCenterSwift Framework Local NotificationsSwift Framework Remote NotificationsSwift Framework UserNotificationsSwift FrameworksSwiftUI FundamentalsSwiftUI WindowGroupA note about catsConsistency is keyHow to ThinkMove your body every dayYour first seedImage InterpolationCreate accessible spatial experiencesDevelop your first immersive appFundamental Design VisionOSGet started with building apps for spatial...Getting Started visionOSBuild great games for spatial computingCreate a great spatial playback experienceDeliver video content for spatial experiencesDiscover Metal for immersive appsStep Eight visionOSExplore rendering for spatial computingMeet Core Location for spatial computingMeet RealityKit TraceOptimize app power and performance for spatial...Step Five visionOSWhat’s new in Xcode 15Design considerations for vision and motionDesign for spatial inputDesign for spatial user interfacesDesign spatial SharePlay experiencesExplore immersive sound designStep Four visionOSDiscover Quick Look for spatial computingMeet Safari for spatial computingRediscover Safari developer featuresStep Nine visionOSWhat’s new in Safari extensionsBring your Unity VR app to a fully immersive spaceCreate immersive Unity appsExplore App Store Connect for spatial computingStep Seven visionOSExplore materials in Reality Composer ProExplore the USD ecosystemMeet Reality Composer ProStep Six visionOSWork with Reality Composer Pro content in XcodeBuild spatial SharePlay experiencesCreate 3D models for Quick Look spatial...Enhance your iPad and iPhone apps for the Shared...Run your iPad and iPhone apps in visionOSStep Ten visionOSBuilding Spatial Experiences with RealityKitEnhance your spatial computing app with RealityKitEvolve your ARKit app for spatial experiencesMeet ARKit for spatial computingStep Three visionOSElevate your windowed app for spatial computingGo beyond the window with SwiftUIMeet SwiftUI for spatial computingStep Two visionOSTake SwiftUI to the next dimensionTen Steps Overview of visionOS By AppleCreate multiple windows in VisionOSTap and Drag Spatial Gesture in VisionOSVisionOS Basic TutorialsvisionOS Documentation SeriesVisionOS Bear Balloon Reverse Gravity No CollisionVisionOS QuestionsWhy attend WWDCNew to WWDC